COM SCI M266A

Statistical Modeling and Learning in Vision and Science

Description: (Same as Statistics M232A.) Lecture, three hours. Preparation: basic statistics, linear algebra (matrix analysis), computer vision. Computer vision and pattern recognition. Study of four types of statistical models for modeling visual patterns: descriptive, causal Markov, generative (hidden Markov), and discriminative. Comparison of principles and algorithms for these models; presentation of unifying picture. Introduction of minimax entropy and EM-type and stochastic algorithms for learning. S/U or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
1 of 1