MATH 42

Introduction to Data-Driven Mathematical Modeling: Life, Universe, and Everything

Description: Lecture, three hours; discussion, one hour. Requisites: courses 31A, 31B, 32A, 32B, 33A, one statistics course from Statistics 10, 12, 13, one programming course from Computer Science 31, Program in Computing 10A, Statistics 20. Introduction to data-driven mathematical modeling combing data analysis with mechanistic modeling of phenomena from various applications. Topics include model formulation, data visualization, nondimensionalization and order-of-magnitude physics, introduction to discrete and continuous dynamical systems, and introduction to discrete and continuous stochastic models. Examples drawn from many fields and practice problems from Mathematical Contest in Modeling. P/NP or letter grading.

Units: 4.0
1 of 1
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
Overall Rating N/A
Easiness N/A/ 5
Clarity N/A/ 5
Workload N/A/ 5
Helpfulness N/A/ 5
AD
1 of 1

Adblock Detected

Bruinwalk is an entirely Daily Bruin-run service brought to you for free. We hate annoying ads just as much as you do, but they help keep our lights on. We promise to keep our ads as relevant for you as possible, so please consider disabling your ad-blocking software while using this site.

Thank you for supporting us!