STATS M231A
Pattern Recognition and Machine Learning
Description: (Formerly numbered M231.) (Same as Computer Science M276A.) Lecture, three hours; discussion, one hour. Designed for graduate students. Fundamental concepts, theories, and algorithms for pattern recognition and machine learning that are used in computer vision, image processing, speech recognition, data mining, statistics, and computational biology. Topics include Bayesian decision theory, parametric and nonparametric learning, clustering, complexity (VC-dimension, MDL, AIC), PCA/ICA/TCA, MDS, SVM, boosting. S/U or letter grading.
Units: 4.0
Units: 4.0